Pseudo-Elliptic Integrals and their Dynamical Applications
نویسندگان
چکیده
منابع مشابه
Pseudo-elliptic Integrals, Units, and Torsion
We remark on pseudo-elliptic integrals and on exceptional function fields, namely function fields defined over an infinite base field but nonetheless containing non-trivial units. Our emphasis is on some elementary criteria that must be satisfied by a squarefree polynomial D.x/ whose square root generates a quadratic function field with non-trivial unit. We detail the genus 1 case. 2000 Mathema...
متن کاملSome oscillatory integrals and their applications
© Séminaire Équations aux dérivées partielles (Polytechnique) (École Polytechnique), 1984-1985, tous droits réservés. L’accès aux archives du séminaire Équations aux dérivées partielles (http://sedp.cedram.org) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infractio...
متن کاملIntegrals involving complete elliptic integrals
We give a closed-form evaluation of a number of Erd elyi-Kober fractional integrals involving elliptic integrals of the rst and second kind, in terms of the 3F2 generalized hypergeometric function. Reduction formulae for 3F2 enable us to simplify the solutions for a number of particular cases. c © 1999 Elsevier Science B.V. All rights reserved.
متن کاملOn Two-parameter Dynamical Systems and Applications
In this note some useful properties of strongly continuous two-parameter semigroups of operators are studied, an exponential formula for two-parameter semigroups of operators on Banach spaces is obtained and some applied examples of two-parameter dynamical systems are discussed
متن کاملPseudo-normal Forms and Their Applications
Since they were introduced by Poincaré in his thesis, Normal Forms have become a common and useful tool in the local qualitative study of dynamical systems. Consequently, the literature about this subject is very rich, not only because of the people working on it (Poincaré, Dulac, Birkhoff, Stenberg, Chen, Arnold, Moser, Tokarev, Bibikov, Belitskǐı, Bruno, Walcher, Cicogna, Gaeta, Bambusi and m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the London Mathematical Society
سال: 1893
ISSN: 0024-6115
DOI: 10.1112/plms/s1-25.1.195